HANDWRITTEN SCRIPT AND WORD RECOGNITION – A VIEW-BASED APPROACH
نویسندگان
چکیده
منابع مشابه
Handwritten Word Recognition Using Multi-view Analysis
This paper brings a contribution to the problem of efficiently recognizing handwritten words from a limited size lexicon. For that, a multiple classifier system has been developed that analyzes the words from three different approximation levels, in order to get a computational approach inspired on the human reading process. For each approximation level a three-module architecture composed of a...
متن کاملHandwritten Devanagari Word Recognition: A Curvelet Transform Based Approach
Abstract— This paper presents a new offline handwritten Devanagari word recognition system. Though Devanagari is the script for Hindi, which is the official language of India, its character and word recognition pose great challenges due to large variety of symbols and their proximity in appearance. In order to extract features which can distinguish similar appearing words, we employ Curvelet Tr...
متن کاملHandwritten Word Recognition Using MLP based Classifier: A Holistic Approach
Holistic Word Recognition is one of the new modalities for handwritten word identification. The holistic paradigm in handwritten word recognition treats the word as a single, indivisible entity and attempts to recognize words from their overall shape, as opposed to recognize the individual characters comprising the word. In the present work reports a longest-run based holistic feature, that has...
متن کاملMixture of Experts for Persian handwritten word recognition
This paper presents the results of Persian handwritten word recognition based on Mixture of Experts technique. In the basic form of ME the problem space is automatically divided into several subspaces for the experts, and the outputs of experts are combined by a gating network. In our proposed model, we used Mixture of Experts Multi Layered Perceptrons with Momentum term, in the classification ...
متن کاملHolistic Farsi handwritten word recognition using gradient features
In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computing
سال: 2014
ISSN: 2312-5381,1727-6209
DOI: 10.47839/ijc.5.3.413